A summary of recent and old results on the security of the Diffie-Hellman key exchange protocol in finite groups
نویسنده
چکیده
Regarding fundamental protocols in cryptography, the Diffie-Hellman (Diffie and Hellman, 1976) public key exchange protocol is one of the oldest and most widely used in today’s applications. Consequently, many specific cryptographic implementations depend on its security. Typically, an underlying (finite dimensional) group is selected to provide candidates for the key. The study of the security of the exchange as depending on the structure of the underlying group is even today poorly understood, with the most common approaches relying on the security of the Discrete Logarithm problem or on the size of the group. Recent developments bring to attention that the relationship is not necessarily valid and that more research is needed that will relate the underlying structure of the group and the security of the Diffie-Hellman exchange. In this chapter we describe the problem in detail, we present the relationship with the previously studied Discrete Logarithm and Computational Diffie-Hellman problems, we expose the various concepts of security, and we introduce a new statistical concept specifically designed to serve the assessment of the security of the exchange.
منابع مشابه
A NEW PROTOCOL MODEL FOR VERIFICATION OF PAYMENT ORDER INFORMATION INTEGRITY IN ONLINE E-PAYMENT SYSTEM USING ELLIPTIC CURVE DIFFIE-HELLMAN KEY AGREEMENT PROTOCOL
Two parties that conduct a business transaction through the internet do not see each other personally nor do they exchange any document neither any money hand-to-hand currency. Electronic payment is a way by which the two parties transfer the money through the internet. Therefore integrity of payment and order information of online purchase is an important concern. With online purchase the cust...
متن کاملDiffie-Hellman type key exchange protocols based on isogenies
In this paper, we propose some Diffie-Hellman type key exchange protocols using isogenies of elliptic curves. The first method which uses the endomorphism ring of an ordinary elliptic curve $ E $, is a straightforward generalization of elliptic curve Diffie-Hellman key exchange. The method uses commutativity of the endomorphism ring $ End(E) $. Then using dual isogenies, we propose...
متن کاملCryptography in Real Quadratic Congruence Function Fields
The Diffie-Hellman key exchange protocol as well as the ElGamal signature scheme are based on exponentiation modulo p for some prime p. Thus the security of these schemes is strongly tied to the difficulty of computing discrete logarithms in the finite field Fp. The Diffie-Hellman protocol has been generalized to other finite groups arising in number theory, and even to the sets of reduced prin...
متن کاملA Secure Wireless Communication Protocol using Diffie - Hellman Key Exchange
In 1976, Diffie and Hellman in their path breaking paper [5] proposed a two party key agreement protocol based on finite field. Diffie – Hellman Key Exchange Protocol [DH protocol] has unique importance in two party wireless communication scenarios. After this protocol several protocols have been proposed bases on DH protocol but the Man in the middle attack raises a serious security concern on...
متن کاملDiffie-Hellman Key Exchange Protocol, Its Generalization and Nilpotent Groups
Author: Ayan Mahalanobis Title: Diffie-Hellman Key Exchange Protocol, its Generalization and Nilpotent Groups Dissertation Advisor: Dr. Spyros Magliveras Degree: Doctor of Philosophy Year: 2005 This dissertation has two chapters. In the first chapter we talk about the discrete logarithm problem, more specifically we concentrate on the Diffie-Hellman key exchange protocol. We survey the current ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008